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ABSTRACT 

 

Radar detection in environments with high spatial and temporal variability is an issue of great importance. Many 

efforts are devoted to the development of adaptive techniques that allow robust operation for all possible scenarios. 

Among the most widely used techniques in this context are those that change the detection threshold adaptively in 

order to maintain a constant false alarm rate (CFAR). New CFAR detectors appear frequently, so it is useful the 

permanent update of the state-of-art in this topic. Therefore, this article presents the theoretical framework required 

by CFAR techniques, as well as a literature review in this matter. Furthermore, the application of non-coherent 

integration to CFAR detection is included as a distinctive element. Emphasis is made on three different scenarios: 

homogeneous clutter, multiple interfering targets and transitions in the clutter level. This review will be useful for 

researchers requiring a brief view of CFAR detection. 

 

INDEX TERMS: Radar, CFAR detection, adaptive techniques, non-coherent integration, clutter.  

 

REVISIÓN DE LOS DETECTORES DE RADAR CON RAZÓN DE FALSA ALARMA 

CONSTANTE 

 

RESUMEN 

 

La detección por radar en ambientes con elevada variabilidad espacial y temporal es una cuestión de gran importancia. 

Numerosos esfuerzos se dedican al desarrollo de técnicas adaptativas que permitan operar robustamente en todos los 

escenarios posibles. Entre las técnicas más utilizadas en este contexto se encuentran aquellas que varían el umbral de 

detección de modo adaptativo con el objetivo de mantener una razón de falsa alarma constante (CFAR). Nuevos 

detectores CFAR surgen frecuentemente, por lo cual resulta útil actualizar permanentemente su estado del arte. Por 

tal motivo, este artículo presenta el marco teórico requerido por las técnicas CFAR, así como una revisión de la 

literatura dedicada a esta temática. Además, se incluye como elemento distintivo la aplicación de la integración no 

coherente a la detección CFAR. Se realiza énfasis en tres escenarios diferentes: clutter homogéneo, múltiples blancos 

interferentes y transiciones en el nivel de clutter. Esta revisión será útil para aquellos investigadores que requieran una 

breve panorámica de la detección CFAR. 

 

PALABRAS CLAVES: Radar, detección CFAR, técnicas adaptativas, integración no coherente, clutter. 

 

 

1. INTRODUCTION 

 

Through the analysis of signals reflected by the surveillance region of the radar, commonly called eco-signals, it is 

possible to detect and classify objects. However, the eco-signals are always contaminated by various types of 

interference, such as internal receiver noise, unwanted reflections on objects that are not of interest to the radar system 

and external signals caused by the operation of other electronic devices. Unwanted reflections are the most complex 

from a practical point of view, since their dynamics are very similar to those of useful eco-signals [1, 2]. For example, 

it is a challenge to differentiate between the echoes coming from the sea surface, called marine clutter, and those 

reflected by objects with a very low radar cross-section, such as oil spills or small packages. 

 

In addition to the interference power, its spatial and temporal variability also origins harmful effects on detection, 

which can be reduced by studying its behavior and preparing the detector to operate properly under the possible 

scenarios. One of the techniques widely used in practice in order to adapt to interference is the constant false alarm 
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rate (CFAR) processing [3]. These techniques were conceived to maintain a false alarm probability (PFA) close to the 

design conditions, regardless of changes in interference power. Note that if other types of changes occur, e.g. in the 

statistical model, different processing methods should be used [4, 5].  

 

Although there are numerous CFAR alternatives [6, 7], they all share two basic principles: (i) estimate the interference 

characteristics from a sliding window whose central element is the resolution cell under test and (ii) vary the detection 

threshold as a function of the above estimate to ensure the desired false alarm probability. The cost of maintaining the 

PFA is that the probability of detection (PD) will not be maximized, as suggested by the optimal method based on the 

Neyman-Pearson criterion [3, 8]. For this reason, CFAR techniques are considered suboptimal and will always have 

a certain loss associated with them. However, their relative ease of implementation and robust behavior have increased 

their spreading in almost all radar domains [6, 7].  

 

The study and dissemination of the most recent CFAR variants, as well as their grouping according to possible 

application scenarios, is a permanent necessity. Even when revisions on this subject are available [6, 7], new 

techniques emerge year after year, so it is useful to keep the state-of-art updated. For these reasons, the objectives of 

this article are to present the theoretical framework required by CFAR techniques, as well as their updated state-of-

art. Also, the application of non-coherent integration to CFAR techniques is included as a distinctive element. This 

last issue, despite its importance, has only been addressed separately by each of the original works and no single article 

is found that encompasses the three main approaches. 

 

The following section sets out the foundation for optimal radar detection as a basis for the development of CFAR 

techniques. The third section addresses CFAR detectors grouped according to the operating scenarios for which they 

were designed: homogeneous clutter, multiple interfering targets and clutter level transitions. Finally, the fourth 

section presents the application of non-coherent integration to CFAR techniques.   

 

2. OPTIMUM RADAR DETECTION  

 

Detection is one of the fundamental functions of any radar system. Its purpose is to decide whether a certain 

measurement was caused by the reflection of a target, or was simply an effect of interference. Decisions can be made 

at different stages of the system, from radio, intermediate and video frequencies up to Doppler processing [9-11]. In 

the simplest case, samples of the video signal from each range scan are tested individually to decide whether a target 

is present in the corresponding resolution cell. 

 

Both the interference and the target echoes are described by statistical models. Consequently, the detection process is 

a typical hypothesis testing problem [12]. For each tested measurement, one of the following assumptions may be 

made: (i) the measurement is due to interference and (ii) the measurement is the combined result of interference and 

target echo. The first is called null hypothesis H0 while the second is the alternative hypothesis H1. 

 

The detection logic examines each measurement and decides the hypothesis that “best describes” its origin. Two 

fundamental questions are implicit in the above quotes: the one describing the involved variables and that allowing 

the decision to be taken optimally. The first is associated with obtaining the probability density functions (PDFs) of 

both cases and so much of the detection problem lies in finding suitable models for these. Considering that detection 

is made from N samples of the data and grouping them in the vector  0 1Nx x −=x , the joint PDFs would be denoted 

as 
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The second issue mentioned above is the selection of the rule that defines unambiguously what is understood by “best” 

or optimal, in terms of decision making between the two hypotheses. This subject concerns statistical theory and its 

applications to almost all branches of science are well known [8, 12]. The most used mathematical tool of this theory 

is the Bayes decision rule, common to all scenarios where decisions are required with a certain degree of uncertainty. 

Several criteria are obtained from this rule and the Minimum Average Risk criterion [8, 13], which objective is to 

minimize the average risk or cost per decision. Significant examples of derived criteria are the minimum probability 

of error, widely used in finance and  economics [14, 15]; the maximum likelihood, applied to communications systems 

[12, 13]; and the Neyman-Pearson criterion, used in radar field. The fundamental motivation for using the latter in 

radar is the lack of knowledge of the costs associated with possible decisions [8, 12] and the necessity to maintain a 

constant false alarm rate.  

 



 
Telemática magazine Vol. 19 No. 3, September-December, 2020, p.78- 90                                        ISSN 1729-3804 

80 
Website: http://revistatelematica.cujae.edu.cu/index.php/tele 
 

Through the Neyman-Pearson’s criteria, the rule is designed to maximize the probability of detection (PD) under the 

restriction of a fixed false alarm probability (PFA). The PFA is highly dependent on the specific application and the 

implications of a “false positive”, which can range from tracking a trajectory for a non-existent target, to firing a 

weapon by mistake. Specifically, the criteria can be approached as follows [8]: to maximize PD by taking PFA = β, 

decide that x contains a target if 
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where the threshold 0 must guarantee 
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The function Λ(x) is known as the likelihood ratio and it is a central element to all decision criteria [8, 12-14]. The 

integration region {x: Λ(x) > 0} is the set of x where the condition Λ(x) > 0 is met. However, it is rarely necessary 

to calculate this region explicitly, since the threshold can be obtained from any monotonic function of Λ(x). This 

function allows an equivalent rule to be applied without affecting the result and is referred to as sufficient decision 

statistics [3, 8]. Denoting this function as Z(x), or simply Z, it follows that: a threshold Λ0 for Λ(x) will correspond to 

a threshold Z0 for Z, thus Z  > Z0 implies Λ(x) > 0. When Z exists, this type of transformation may result in functions 

whose computation is simpler. The relationship Z(x) presents an essential property: the data appear in the likelihood 

ratio only through Z. Sufficient statistics can be interpreted as a coordinate transformation chosen to put all useful 

information into a single dimension [13]. Taking the above into account, the optimal decision rule following the 

Neyman-Pearson criterion can be expressed as 
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The specific threshold value that guarantees PFA = β could be calculated by (3). However, this equation is not very 

useful since its evaluation requires multiple integrations in N-dimensional space, as well as the explicit definition of 

the integration region. Since Λ(x) and Z are functions of the random vector x, they will also be random variables with 

their own PDFs. Therefore, the most used alternative approach is to express the PFA in terms of Z and solve the 

expression 
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by computing the threshold Z0 that satisfies it [16]. Because false alarms occur when the target is absent, the detection 

threshold will depend only on the PDF of Z for the case where observations are produced by interference. 

 

As a summary, Fig. 1 shows the essential elements for optimal radar detection. Once the observable variables or input 

data x have been defined, models are established for their PDF under the two hypotheses, either by experimentation 

or by theoretical considerations. Then, the likelihood ratio is considered to define the operations to be performed on 

the data. From Λ(x), and whenever possible, a monotonic function is identified that results in sufficient decision 

statistics Z, which simplifies the calculations. Having a suitable model for the PDF of Z under H0, the threshold Z0 

that guarantees the design PFA is determined numerically [16] or analytically [3, 12] through equation (5). The 

threshold is used by the detector, whose basic function is to apply the rule of (4) to decide the hypothesis that best 

describes the origin of the observed data. 
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Figure 1: Essential elements for optimum radar detection. 

 

Optimum detection for a non-fluctuating target in the presence of white noise 

 

An example of optimum radar detection is the case of a non-fluctuating target through non-coherent integration of N 

pulses, in presence of additive white Gaussian noise with zero mean value, variance σ2 and quadratic demodulator. 

Grouping the pulse samples in the vector  0 1Nx x −=x , it is shown [3] that the sufficient decision statistic is given 

by 
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Thus, the squares of the magnitudes corresponding to the N pulses are added up (or integrated according to the radar 

operator’s argot) and the result is compared following the rule (4) with the threshold 
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where A is the non-fluctuating echo amplitude and T must satisfy 
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where I(δ, ω)  is Pearson’s form of the incomplete gamma function given by  
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For the simple case of single-pulse detection with N = 1, (8) is reduced to  
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According to (7), optimum detection assumes that σ and A are known. From (10) it is shown that T is proportional to 

the variance or power of the interference, so the Z0 threshold requires knowledge of σ2. However, in most cases, the 

spatial and temporal variability of the environment causes this parameter to be a priori unknown to the radar system. 
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Thus, setting an inappropriate value for σ2 induces variations in PFA that become significant. For example, deviations 

of 2 dB of the real power from the assumed power result in increases of about 3 orders of magnitude in the PFA [3].  

 

Besides, the amplitude of the echoes is virtually unpredictable beyond well-controlled laboratory conditions. Although 

changes in aspect ratio and target fluctuations could be modeled to some extent [17, 18], it would be extremely difficult 

to know them in advance and to select the appropriate model for all different scenarios.  

 

3. RADAR DETECTION WITH CONSTANT FALSE ALARM RATE 

 

To solve the above problems, detection techniques were developed that calculate the threshold in an adaptive way. 

Although these are considered suboptimal, since they do not maximize the PD (because of the lack of prior knowledge 

about the characteristics of the target to be detected), they do maintain a PFA close to the desired one. This is why they 

are called Constant False Alarm Rate (CFAR) processing techniques. The general objective that distinguishes them is 

to estimate the characteristics (power, for example) of the interference by means of target-free “reference channels”, 

so that the threshold is properly adjusted and the PFA is kept at the appropriate levels. 

 

Figure 2 shows a generic CFAR processor for a range profile, although the analysis could be easily extended to several 

angular sectors and/or several Doppler shift cells. The samples at the output of the demodulator are stored in a shift 

register that functions as a sliding window [19], which is divided into U leading and lagging reference cells, guard 

cells (GC) and the cell under test (CUT). Hereafter the term CUT is used interchangeably to refer to the corresponding 

value of the video signal and to the cell itself, and its meaning becomes clear on the context.  

 

 
Figure 2: Diagram of a generic CFAR detector. 

 

Generally, the CUT is located in the center of the window and it is the cell compared with the adjustable threshold (T) 

to decide the presence or absence of a target. The reference U cells are used to estimate the interference characteristics 

(E) while the guard cells do not affect this estimate as they may contain echoes associated with a target covering 

several resolution cells. The window slides so that all cells in the surveillance region take the place of the CUT. 

 

Interference estimates for the leading (ELEAD) and lagging (ELAGG) windows are generally computed independently. 

Both are combined to form the total interference estimate E, through technique-dependent operations, which may 

include average, minimum, maximum, etc. The constant α is selected to ensure a certain PFA, and is a function of both 

the PFA and other specific parameters. The threshold T is defined as the product between α and the variable interference 

estimate E, where the points of contact with (10) should be noted. Once T is determined, it is compared with the CUT 

sample and the decision is made. Then the sliding window is moved by one cell and the process is repeated for all the 

cells of interest. 

 

The large number of CFAR detectors [6, 7] and the operations they perform are due to the different scenarios presented 

in real conditions. The simplest of all is the one where the clutter (the most significant type of interference for most 

applications) can be considered homogeneous. In this case, the statistical characteristics of all reference cells are the 

same, or at least quite similar, and therefore can be used to provide an adequate estimate of the clutter level and 

Video 

Signal
GC... GCCUT ...

LEADE
LAGGE

E

 1

0

 

 

CUT T H

CUT T H

=T E

1 2 1U + U2U

1x 2Ux
2x

2 1+Ux
Ux



REVIEW OF RADAR DETECTORS WITH CONSTANT FALSE ALARM RATE 

83 

Telemática magazine Vol. 19. No. 3, September-December, 2020. ISSN 1729-3804 

detection threshold. However, in practice there are many situations where heterogeneity prevails. For example, it is 

common for the reference window to contain targets, which would inevitably affect the clutter estimate with a 

consequent decline in performance. Another typical situation is transitioning between regions with different clutter, 

such as storm fronts or coastlines, so the estimate against which the CUT is compared would also be incorrect. For 

these reasons, the scenarios of homogeneous clutter, multiple targets and clutter transitions, as well as the solutions 

offered for each case, will be addressed below. 

 

Scenario with homogeneous clutter  

 

The scenario with homogeneous clutter can be considered when the samples of the resolution cells are independent 

and identically distributed. This assumes that there are no interfering targets or clutter level transitions in the window 

that affect the threshold estimate. For this context emerged the CFAR technique known as CA-CFAR (Cell Averaging 

CFAR) [20]. The algorithm is relatively simple since it calculates the threshold from the average clutter power estimate 

according to 
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Following the logic of Fig. 2, the threshold will have the form 
CA CA CAT E= , where it is shown that αCA satisfies [3] 
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The above equation denotes that the PFA will be independent of the characteristics of the interference (ECA). Thus, the 

CA-CFAR detector maintains the PFA constant, without a priori knowledge of the clutter level. With changes in the 

clutter, the PFA will remain constant because the threshold TCA is adjusted in the appropriate proportion, depending on 

the variable estimate ECA and the αCA multiplier. It is precisely this property that defines a detector with a constant 

false alarm rate [3]. In general, if the PFA expression for a given technique is independent of the characteristics of the 

interference, as is the case for (12), it is said to satisfy the CFAR condition. The value of αCA is calculated solving (12) 

for the design PFA, given the number of reference cells in the sliding window. 

 

It should be clarified that equations (11) and (12) are valid only for the quadratic demodulator. In general, obtaining 

the relationship between the CFAR multiplier and the PFA for other types of demodulators is a complex task when 

considering all variants of CFAR detectors. The emphasis in most of the literature is on the quadratic demodulator [3, 

21] and the following analyses will only consider this case. 

 

The performance of the CA-CFAR processor approaches the optimum detector as the number of samples used in the 

estimate of the interference increases [22-24]. This implies that the number of cells in the reference window U must 

be increased, which in turn increases the possibility of including heterogeneities that would affect the estimate. 

Although CA-CFAR remains as the detector of choice in homogeneous conditions, the above contradiction imposes 

a practical limit on it use. Numerous variants have emerged that improve the performance of CA-CFAR for 

heterogeneous scenarios like those discussed below. 

 

Scenario with multiple interfering targets 

 

The presence of one or more targets in the reference cells, which will be referred to as interfering targets, may cause 

a target to be masked in the CUT. This phenomenon is divided into two categories: self-masking or mutual masking. 

The first type is associated with extended targets, those that due to their size take up more than one resolution cell. If 

an extended target is found in the CUT, the rest of the samples associated with it will correspond to the reference cells 

and, therefore, will affect the clutter estimate. In this case, the threshold tends to be higher and self-masking may 

occur. This problem is generally solved by adding guard cells on both sides of the CUT, which depends on the 

maximum expected target extension and the resolution of the radar. The case of mutual masking occurs when there 

are interfering targets in the reference window, not associated with the target of the CUT. 

 

Masking is a phenomenon of random nature and will depend among other factors on the window size, the desired PFA, 

the number of interfering targets, and the ratio between the powers of the target at the CUT and the interferer. Several 

detectors have been designed to solve the above problems. Among these is the FN-CFAR [25] (First-order-difference 

with Non-coherent integration CFAR) which is designed to eliminate interfering targets by the ordered difference of 

the samples in reference cells after non-coherent integration. Its performance with homogeneous clutter is quite similar 
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to that of CA-CFAR and although they claim that it does not require a priori knowledge of the number of interfering 

targets, indeed the computation of the CFAR multiplier does. 

 

In [26] they propose the SOD-CFAR detector (Second-Order statistics Difference hypothesis CFAR) based on 

hypothesis testing and second-order differences. In the first step, abrupt changes in reference cells produced by 

interfering targets are identified and the corresponding samples are discarded. To achieve this, the samples are sorted 

in ascending order and the index of the sample with the least second-order difference is selected. The remaining 

samples are then analyzed for exponential distribution using the Shapiro-Wilk test [27] and the reference cells are 

selected, allowing the clutter to be estimated with homogeneous samples. Although it does not require a priori 

information about the scenario, its validity is limited to the assumption about the exponential model, so it will fail in 

case the model is not adequate. 

 

Another variant that shows similar performance to CA-CFAR for homogeneous background and operates robustly in 

the presence of multiple targets is the two-level detector of [28]. The first level pre-processes the samples by replacing 

those larger than a threshold with their mean value and then, at the second level, they are subjected to a typical           

CA-CFAR detector. The fundamental advantage is a reduction in computational cost compared to detectors that 

require sample order, as is the case with most successful solutions in the multi-target scenario [25, 26, 29, 30]. 

 

In [31] they present a detector based on the Grubbs criterion for outliers detection (samples with anomalous behavior), 

called CAG-CFAR (Cell Averaging Grubbs Criterion CFAR). Its main limitation is that the Grubbs criterion is valid 

only for Gaussian samples and therefore requires working directly with the samples of the in-phase and quadrature 

channels. In this way, its usage will be restricted to coherent systems and, in addition, its performance must deteriorate 

for non-Gaussian interference. 

 

All of the above techniques have recently emerged as alternatives to the most widely used and widespread for the 

multiple-target scenario. The first to be applied was the CMLD-CFAR (Censored Mean-Level Detector CFAR) [29] 

and SO-CFAR (Smallest-Of-CA-CFAR) [32]. CMLD-CFAR sorts the samples in ascending order and discards the 

higher k, so they will not contribute to the estimate of the mean clutter power. It is clear that this detector works well 

as long as the number of interfering targets does not exceed the k-value, which should be selected in advance. The 

SO-CFAR separately compute the leading and lagging window averages and selects the lower as the clutter estimate. 

In this way, it will be possible to avoid mutual masking, provided that the interfering targets are only in one of the 

two reference windows. 

 

Without doubt, the most widely used detector for the interfering target scenario is the OS-CFAR (Order Statistics 

CFAR) [30]. Therefore, it is the reference standard [22, 31] for any new technique. The OS-CFAR sorts the samples 

in the reference window in an ascending order 
( ) ( ) ( )
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so that it is capable of suppressing up to U - k interfering targets. In this case, the relationship between the multiplier 

αOS and the probability of false alarm is given by 
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where ( )! ! !U

kC U k U k= −  it is the binomial coefficient and the equation must be solved iteratively. As before, the 

threshold will have the form 
OS OS OST E=  and (14) manifests the CFAR property of this detector. 

 

A generalization of the previous sorting and censoring (elimination of samples) detectors is the TM-CFAR (Trimmed 

Mean CFAR) [33]. Its operation consists of sorting the samples and discarding the largest k2 and the smallest k1 for 

clutter estimation. This technique, at a slightly higher complexity cost, allows k1 and k2 to be selected in a way that 
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avoids mutual masking and the negative effects of clutter transitions, a topic discussed below. In [34], modifications 

to the OS-CFAR detector are proposed to work with Pareto distribution clutters, a recently adopted model [1]. 

 

Scenario with clutter transition  

 

Abrupt changes in ground reflectivity cause the so-called clutter transitions, which increase false alarms and the 

possibility of masking targets of interest. The occurrence of clutter transitions in the reference window has two 

fundamental effects on the performance of CFAR detectors. The first is the reduction in detection probability for 

targets located in the area with the lowest clutter power. The second is associated with increased false alarms in cells 

near the transition. 

 

The possibility that a transition masks nearby targets depends on the number of cells in the reference window with the 

highest clutter power and the difference between the two levels [35]. False alarms may increase or decrease depending 

on the location of the CUT. If the CUT is located in the zone with the lowest reflectivity, false alarms are reduced due 

to the higher threshold estimate, while the opposite happens when it is in the zone with the highest reflectivity. 

 

Among the detectors designed to operate at clutter transitions is the so-called SKMR-CFAR (Skewness and Mean 

Ratio CFAR) [36]. Its main characteristic is to decide the clutter estimate from the skewness coefficient and the ratio 

between the average values of both reference windows. Although they only analyze their performance for 

heterogeneous clutters with Weibull distribution, the reasoning could be extended to other scenarios. Also for Weibull 

clutter, the work of [37] combines the non-coherent integration and a double threshold logic (binary integration), with 

an algorithm that allows to dynamically detect the cell where the clutter transition occurs. Hypothesis tests are 

performed for the assumed distribution and their computational complexity is relatively high. 

 

Following a different point of view, the paper [38] proposes the Clustering-CFAR detector. This detector uses the 

CA-CFAR technique, but employs clustering methods to determine the set of cells that, due to their characteristics of 

homogeneity and proximity to the CUT, could be used to the clutter estimate. The method offers good performance 

with clutter transitions, although the proposed algorithms require a high computational load. Like Clustering-CFAR, 

the authors of [24] use a CA-CFAR detector that estimates the clutter from previously selected reference cells, using 

algorithms based on geographical knowledge of the terrain and other variables. They call the detector KB-CFAR 

(Knowledge-Based CFAR) and its implementation also requires a high computational cost. 

 

Most of the detectors with a good performance against clutter transitions are of the composite type, briefly discussed 

in the next section. Most of them [23, 39-43] incorporate as the detector of choice for this scenario the GO-CFAR 

(Greatest-Of-CA-CFAR) technique [44], which is taken as a reference in this scenario. The GO-CFAR achieves a 

decrease in false alarms by estimating the clutter power separately for both windows according to 
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where the reason for its name remains clear. The multiplier αGO that guarantees the PFA is determined by  
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Like with the OS-CFAR, the above equation must be solved iteratively to establish the threshold 
GO GO GOT E= . 

Again, compliance with the CFAR condition is verified in (16). The GO-CFAR loss to CA-CFAR with the same 

window size is estimated to be about 0.3 dB [44] and its hardware implementation using FPGA technology, with some 

modifications, can be found in [45]. 

 

Other CFAR detectors 

 

Although the emphasis of the previous sections was on the three detectors taken as reference standards by the scientific 

community (CA-CFAR, OS-CFAR and GO-CFAR), some numerous techniques and algorithms that attempt to 

improve their performance exist, especially in heterogeneous environments. Several cases [46-51] focus on providing 

algorithms that avoid the a priori knowledge of the number of interfering targets and allow automatic identification of 

the cell where the clutter transition occurs. These single structure detectors are useful because they can operate in 

different scenarios using the same algorithm. The authors of [52, 53] successfully apply a quite versatile structure that 

allows their use in several clutter scenarios. 
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Another trend is found in the group of composite CFAR detectors, the first exponent of which was the VI-CFAR 

(Variability Index CFAR), proposed in [39] and tested for marine environments [54]. The strategy common to this 

type of detector is based on identifying the most appropriate scenario and selecting a certain detection structure. The 

identification is made by means of a statistical indicator commonly called variability index, which presents different 

values for homogeneous and heterogeneous environments. 

 

In this sense, the paper [42] evaluates the performance of the EVI-ASD-CFAR (Enhanced Variability Index Automatic 

Selection and Detection CFAR) detector, designed for clutter with Pareto distribution. The algorithm selects between 

GM-CFAR (Geometric Mean CFAR), GO-CFAR and TM-CFAR. A modification of the EVI-ASD-CFAR proposed 

in [55] involves the Pietra index to select among the same previous detectors. 

 

The paper [41] analyzes the performance against Weibull clutter as a result of combining different detectors for each 

of the reference windows. The detectors used are CA-CFAR, GO-CFAR, SO-CFAR and OS-CFAR. They propose 

that CA-CFAR is the choice before homogeneous clutter, for interfering targets the best performance is obtained by 

combining the lowest of the estimates between OS-CFAR and CA-CFAR, while for clutter transitions it is better to 

select the highest. The authors of [43] propose the SVM-CFAR detector (Support Vector Machine CFAR), which 

chooses between the ACCA-CFAR [46] and GO-CFAR algorithms, using a support vector machine. The variability 

index is used as a feature to train the classifier and recognize the appropriate operating scenario. 

 

Slight variations have also been proposed to the composite detectors, especially concerning the used types [23, 48], 

the selection logic [56] or the possibility of avoiding the ordering of samples [40] for computation of the variability 

index. Among the detectors of less diffusion and little general use, there are those based on fuzzy normalization logic 

[57], goodness-of-fit [58, 59] and Bayesian theory [60, 61]. 

 

4. APPLICATION OF NON-COHERENT INTEGRATION 
 

Most of the CFAR detectors presented so far decide from a single sample of the video signal for each resolution cell. 

This is equivalent to detecting once per range scan. However, the accumulation of the samples corresponding to P 

distance scans (known in radar argot as integration) before detection provides a processing gain [3, 62], especially in 

low signal-to-noise environments. If the integration is done coherently, that is, using the phase of the received pulses, 

the gain can become P times that of a single pulse detection [62]. In the case of non-coherent integration, the gain is 

between P and P [62]. However, because of its simplicity and low cost, the emphasis is often placed on this type 

of integration because it is of greater interest to commercial radar systems. 

 

When integrating several ranges scans the value of the α multiplier (see Fig. 2) must be modified, since if the 

accumulation of samples is not taken into account, then the PFA would be affected. Despite the benefits reported by 

non-coherent integration, relatively few papers [25, 63, 64] are dedicated to the calculation of CFAR multipliers that 

guarantee a certain PFA, mainly due to the mathematical complexity. All the investigations reported in this direction 

are limited to the use of the quadratic demodulator and the CA-CFAR, OS-CFAR and GO-CFAR detectors. 

 

Starting with the CA-CFAR detector used in homogeneous clutter environments as previously discussed, the 

relationship between the αCA multiplier and the PFA is given by [65]  
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which must be solved iteratively. Following the same notation as before, P represents the number of integrated pulses, 

U the number of reference cells in the sliding window and ( )! ! !j

iC j i j i= −  is the binomial coefficient. 

 

For the scenario with multiple interfering targets, the choice is the OS-CFAR detector. In this case, the αOS multiplier 

will guarantee the PFA if it satisfies [66] 
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In the same way that (17), the value of αOS is determined iteratively and the integral must be solved numerically. The 

k variable is the order of the sample chosen as clutter estimate as proposed by the OS-CFAR algorithm. 

 

On the other hand, for clutter transitions the detector taken as a reference should be the GO-CFAR. The dependence 

between the PFA and the αGO multiplier is given by [67]  
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where L = UP/2 and Γ(·) is the gamma function [68]. Once again, the value of αGO is calculated iteratively. 

 

5. CONCLUSIONS 

 

The spatial and temporal variability of the environment makes the behavior in terms of false alarms unacceptable. In 

order to estimate the characteristics of the clutter and dynamically adjust the threshold to maintain adequate levels of 

false alarm, the CFAR techniques were developed. The large number of CFAR detectors and the different operations 

they perform are due to the different scenarios presented in real conditions.  

 

For the scenario with homogeneous clutter, the technique of choice is CA-CFAR. On the other hand, when the clutter 

is heterogeneous, the most widely used detectors are the OS-CFAR and the GO-CFAR. The first one is used when 

there are interfering targets in the surveillance region, while the second is used when there are clutter transitions. 

These three detectors are reference standards for any new CFAR technique. The addition of non-coherent integration 

to CFAR detectors provides a processing gain, especially in low signal-to-noise environments. 
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