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ABSTRACT

Impulsive noise is an undesirable signal from the communications channel that corrupts the transmitted
signal in communications systems. Example of such a systems are Digital Television, Power Line Commu-
nications and Underwater Acoustic Communications in which the transmitted signals are more affected
by this type of noise than by the typical AWGN noise. The current article summarizes several studies
on impulsive noise from an statistical point of view. In this concern a variety of models are presented
analytically and the main characteristics are described through the use of graphical representations.
Furthermore, some ideas for future research field are also discussed.
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RESUMEN

El ruido impulsivo es una senal no deseada del canal de comunicaciones que afecta la recepcion de
informacioén en los sistemas de comunicaciones. Ejemplo de estos sistemas son los sistemas de Television
Digital, Comunicaciones por Lineas de Potencia y Comunicaciones Actsticas Sub-Marinas, en los cuales
las senales transmitidas son mas afectadas por este tipo de ruido que por el tipico ruido blanco. El
presente articulo resume diversos estudios en la modelacion del ruido impulsivo desde el punto de vista
estadistico. Se presentan analiticamente diversos modelos y sus principales caracteristicas se describen
con el apoyo de graficos. Adicionalmente se presentan algunas ideas de futuras investigaciones en este
campo de estudio.

PALABRAS CLAVES: Modelo de Ruido Impulsivo, Modelo de Middleton, Modelo de Markov.

1. INTRODUCTION

Impulsive noise is mainly comprised by short duration noisy pulses. This noise is caused by switching
devices, channel environment, clicks from computer keyboards, loads not synchronous with the power
frequency, etc. Opposite to the standard AWGN model, impulsive noise is a non-stationary signal and
may represent the main disturbing signal, such is the case of Power Line Communications Systems
(PLC) [1]. This undesirable signal is also reported on Digital Television [2], audio broadcasting [3], xDSL
technologies [4] as well as Underwater Acoustic systems [5]. In the frequency range from some hundreds
of kHz up to 20MHz, the measurement of impulsive noise shows that it exhibits a duration of some
microseconds up to a few milliseconds[6], and it could be as high as 40 dB above the background noise
[7].

Reports in regard to impulse noise are focused on three major areas: noise modelling, noise detection
and noise reduction. Noise modelling is addressed by the definition of both, the main parameters and
the associated probability density functions. As explained by the pioneer work of Middleton in [8], the
modelling of impulsive noise allows to provide a realistic and quantitative description of this kind of
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Figure 1: Impulsive noise pulses.

interference, to specify and guide experiments for measuring the effects of this interference. This is used
to determine the optimum receiver in this environment.

The model to be derived must be canonical, i.e., the general expression does not depend on the source,
it is invariant of the particular noise source [9]. Besides, since this type of noise is impulsive, only some
portions of the signal are affected. In this regard, noise detection algorithms attempt to detect the
portions of the signals contaminated with noise. Finally, noise reduction algorithms are employed to
cancel the noisy portions of the signal through the modelled and corrupted samples.

In order to model this kind of noise, it is classified in three different groups [10]: periodic impulses
synchronous to the main frequencies, periodic impulses asynchronous to the main frequencies, aperiodic
impulsive noise, all of these caused by supplies. From this classes of noise, the lats one is the stronger
and causes severe deterioration to the system’s performance [11]. This is considered as the system’s
impulsive noise and the main cause of errors in PLC Communications [12]. Additionally, impulsive noise
is described by the following parameters, as depicted in Figure 1 [13]: Peak amplitude (A™), Damping
factor , Width (¢,,), Pseudo frequency fy associated to the damped sinusoid, Arrival time (ta), Inter-
arrival time (¢.a;r): Time between consecutive pulses.

The behavior of these random parameters are described by statistical models in order to obtain the
probability density functions. The focus of this report is the description of asynchronous impulsive noise
based on Markov Chain and Middleton Models. This is given by the fact that the structure of bursty
pulses, commonly observed when impulsive noise is present, are modeled by the Markov Chain in a
more realistic way [14]. The rest of the paper is organized as follows: Section 2 summarizes the reported
models of impulsive noise. Section 3 outlines some future directions of research. Finally, conclusions are
presented in Section 4.

2. STATISTICAL DESCRIPTION OF IMPULSIVE NOISE

Impulsive noise is described through an stochastic process with properties Non-stationary, Binary-state
sequence, Random amplitude and Random position of occurrence [15]. The impulsive noise parameters
to be modelled are Peak Amplitude, Damping factor, Phase, Width, Pseudo frequency fy, Inter-arrival
time. These parameters are modeled by probability distributions. The amplitude is usually modeled
by Gaussian or a-stable (SaS) distributions. The amplitude and time of arrival are jointly modeled by
means of the processes: Middleton Model [9], Two term mixture model [16], Bernoulli-Gaussian Model
[15], Poisson-Gaussian Model [11], Poisson-a-stable Model [7] and Markov Chain Model [6].
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Except for the Markov Chain Model, the amplitude is modeled as an identical independent distributed
(i.i.d.) process. This assumption limits the applicability when bursty pulses are considered. In this case
Markov Chain offers a more realistic model [14].

Analytically, one single pulse of impulsive noise can be described by [13]:

nr(t) = Asin(w -t + @)e™ 7, (1)
where A represents the amplitude, w the frequency, ¢ the phase and 7 the damping factor equivalent to
the width of the pulse.

The single pulse can also be represented in a complex representation as the superposition of damped

sinusoids [17]:

M—1

n(t) =Y Ajeitemi?mlit (2)

i=0
where A;, o; and f; represent amplitude, damping factor and frequency respectively. The value of M

represents the total number of damped sinusoids.

In a similar fashion, burst pulses of impulsive noise are described by three different terms as follows [15]
(discrete domain):

1. h[n]: Describes the duration and shape of the noisy pulse. Typically determined by the impulse
response of the channel.
2. m[m]: Describes the amplitude of the noisy pulse. This is a continuous-value random process.

3. blm]: Describes the time of occurrence of impulse noise. This is a binary-valued random sequence.

These three terms determine the impulsive noise by the following relation:

nr[m|] = i: hlk] n[m — k] blm — k], (3)
k=0

Fig. 2 depicts the model as well as the impulsive noise sequence at the output. This statistical models
establish the probability density function of the sequence:

ni[m] = n[m] b[m], (4)

In this case n;[m] modulates the amplitude and inter-arrival time of waveform h[m] given by n[m] and
b[m], respectively.

A third and more complex analytical expression is considered when the effect of the channel as well as
the filter at the receiver are taken into account. These considerations yields the following expression for
the received interference I,,(7T") as [12]:

km
Lo (T) = (dm) Y B i€ X, 5, (5)
1=1
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Figure 2: Impulse noise model [15].

where:

m: interference source,

i: impulse noise indicator,

T: window duration,

y(d,,) = e~%%m is the channel attenuation if m is a wired source,

dm,: distance between the source and the receiver,

km: total number of impulses in T,

hm7iej97n~i: flat channel gain between the source m and the receiver,

X,n, % is the random emission given by the duration of the impulse ¢ and is represented by:

mel- = Bm"iej(b’”’i].(’rmj < Tfl’l) (6)

B, i€’ ¢m.i: represents the result of narrowband filtering of interference emissions performed at the
receiver,

B, :: is an i.i.d. envelope, ¢y, ;: random phase uniformly distributed on [0, 27],

Tf” >> Aif,.: duration of a noisy pulse,

Af,: receiver bandwidth (Af, ~ 1 MHz for broadband PLC),
1: indicator function.

2.1. Middleton Model

Middleton Model describes the probability density function (pdf) of impulsive noise as the linear super-
position of Gaussian functions with different variances as [9]:

O Am A 1 _ ’;
px(@) =) e (7)

| / 2
m=0 me 27T0m

where:

1\ (&+T
2 _ (1.2 A 2

where the parameter A is called impulsive index. The parameter I” is the background-to-impulsive noise
ratio, the value of I" gives how strong the impulsive noise is in comparison with the AWGN component
[18]. The value of 0%, = 02 + 07 is the total power given by the contribution of the impulsive noise power
0? and AWGN process o2

n*
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On the other hand, the term An;fl_A in (7), represents the Poisson-distributed probability describing
the event that m noise sources contribute to the impulsive event [19]. This term describes independent
impulse emissions Poisson distributed in space and time [18].

The term A is directly related to the pulse rate A and the impulse mean duration 7" at the receiver, this
is given by A = AT. Lower values of A describe lower number of impulses and/or duration. In this case,
noise is globally dominated by a typical event, as the impulsive scenario dictates. Higher values of A
describe AWGN processes. The PDF described in (7) exhibits a mean value equals to zero. Besides, the
non-impulse AWGN process is also included in the first term considering m = 0 [18].

This model describes the Class-A Middleton Model from a total of three classes, including B and C.
Class A describes impulsive pulses having narrower spectral band than the receiver. Class A is used to
model a wide variety of electromagnetic emissions, requires the lowest number of parameters and has
the most tractable probability density function [18]. Class B describes impulsive pulses involving higher
spectral band than the receiver. Class C includes the additive mixture of A and B classes.

The Middleton Class-A model is used to determine the probability density function of noise amplitude.
Using the distribution in (7), impulsive noise is described by the canonical parameters A, I" and o%,. The
use of this model is an attractive approach, since it results to be canonical (i.e., invariant to a particular
noisy source mechanism) and the model is totally described by just three parameters [18].

Although, several classes of impulsive noise can be expressed by this approach, the model does not
define time-domain features [20] and does not describe the PLC channel noise in an accurate way [7].
Additionally, this model fails when bursty impulsive noise is considered. Usually, pulses in bursts are
time correlated and the Middleton model assumes i.i.d. behaviour. The Middleton model only describes
the first-order statistic [18] without assumptions to the correlation between consecutive pulses.

Further studies in regard to this model establishes the characteristic function for the noise amplitudes
as:

)k —kw|?E{n2, B2 }
e 4

_ o~ (A fm)¥ —rlwi?en2 B2y
By, (w) = e 3 LA | (9)
k=0 :

taking into account the channel parameters. Where:

I,,,: noise amplitude,

m: interference source,

Am: average total of pulses per second

fim: expected value of T}, ; >> 17

Tfm >> fﬂ: noisy pulse duration

hmyiej‘g""’i: amplitude flat channel gain between the source m and the receiver,

B,,,: represents the result of narrowband filtering of interference emissions performed at the receiver, is
an i.i.d. envelope,

2.2. Markov Chain Models

Markov chains can be used to describe non-stationary process whereas the random events can be described
by states. Indeed, this is the case of impulsive noise, whether the noise is present or not can be described
by two states (Binary Model), for instance.

Through the use of Markov chains three approaches has been derived:
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Binary state model [15, 14],
Markov-Middleton model [18],
Partitioned Markov chain [21, 6],
Second level Markov chain [22]

=W

The use of Markov chains allows to describe the memory of the channel when pulses occur in bursts.
However, in case of multicarrier modulation like OFDM, the nature of pulses becomes irrelevant (in bursts
or randomly), since all the subcarriers are affected in the time domain because of the DFT operation at
the receiver. One or several impulses, causes the same symbol error as long as the noise impulse variance
remains constant. On the contrary, in case of single pulse modulation it is important to distinguish
impulse noise with or without memory. If one impulse happens then just a few symbols are affected [23].

2.2.1. Binary State Model

The binary state model is described as depicted in Figure 3. The state S; describes the transmission of
noisy samples from impulsive noise. The state Sy describes the absence of noise, in this case samples of
zero value are transmitted. The probabilities of transitions from S; to S; are given by the values p;;,
i,7 €{0,1}.

p](i

1-p,, <§§£/}\:QD 1-p,,
— -

Figure 3: Binary State Model of the impulsive noise [14].

For this model the following figures related to bursty pulses are defined [14]:

Po1
po1+pio’
= Average percentage of non-pulses: S,,, =1—p=
1
Po1
= Average block size of non-pulses: B,,, =

1
Po1+pPio

= Average percentage of pulses: S,, =p =

Pio
po1+pio’

= Average block size of pulses: B, =

P1o
= Noise Memory: 1 =

In can be shown that when the 7 = 1 the noise is memoryless. For instance, this happens when p1o = 0.1
and pg1 = 0.9. In this case, the Markov chain is equivalent to a Bernoulli-Gaussian model with i.i.d.
samples [14]. When 7 > 1 the noise has a persistent memory, and the average permanence in a given
state is longer compared to the memoryless case.

The i.i.d. process takes places when the columns of the transition matrix is given by:

1—pio P10
pP= (10)
Po1 1 —po1

are equals. That is, when p1g + pg1 = 1 which in turn gives 7 = 1. In this case the arrival to the state 4
is independent from the previous state, p;; = p;. Thus, the process is said to be memoryless.

For simplicity purposes, the model can be assumed to be memory-less, hence the probabilities of transition
are independent of time. This binary model can be used to simulate the transmission of a variety of
impulsive noises, each with a different shape. An additional state can be included to describe additional
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oscillations between noisy pulses. This assumption is equivalent to Bernoulli-Gaussian model with i.i.d.
samples.

This binary model uses an exponential distribution to describe the width of the pulse and time of arrival
[21]. This is known as the Gilbert-Elliot model described in [24]. Besides, one of this state may model
the presence of impulsive noise just assigning a Gaussian distribution of higher variance to describe the
amplitude of the signal [18].

2.2.2. Markov-Middleton model

The Markov-Middleton model employs the Middleton PDF equation in (7) reduced to the first 4 terms
in order to describe the amplitude of noise [18]. Using a Markov chain description, the history of past
events is considered on the current event and bursty pulses are modelled more accurate.

The proposed Markov chain model is depicted in Figure 4 a). This model represents by 4 states the first
four terms of the Middleton Class-A model in (7). Additionally, there is a transition state of duration
null to connect the states. The probabilities p; describe the probability of arrival to the state ¢ from the
transition state. The value of x considers the correlation between the noisy samples and is independent
from the canonical parameters of the Middleton model A, I', and (3.

X
p’o o
) X
p 1 o1 e o ¥, AA 3 » :As
s . 1 “
Transition = - =
state P X
' ) B
P’
X
3 «
a) b)

Figure 4: a) Markov-Middleton model. b) Equivalent representation of the Markov-Middleton model.

The equivalent representation of the model in Figure 4 a) is shown in 4 b). The associated matrix
P = [pij|axa of transition probabilities is given by:

v+ (1-z)py  (1-2)p) (1 —)py (1 —)pg
po| =y x+(1-a)p (1 —2)py (1 —2)p: (11)
(1—2z)py (1—z)py r+(1-xz)py  (1—z)ps
(1—2)py (1—2)py (I-z)py o+ (1-)p;

The Markov chain presented in Figure 4b) is irreducible, every state communicates with each other. This
condition is sufficient to establish a stationary state vector given by m = [p} p} p5 ps] independent of
the initial state. This result establishes that the amplitude distribution of the considered Markov chain
model represents a Middleton Class-A model as long as each state generate a Gaussian noisy sample of
variance o,,. Thus, the parameters of this model are the same of the Middleton Class-A parameters
A, T, p% plus the correlation parameter z.

Besides, the case © = 0 reduces the current model to the Middleton Class-A model. In this case,
the transition probabilities p;; = p; does not depend on the previous state, hence the states are i.i.d.
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distributed and the model is identical to the Middleton Class-A model. By means of this model, the
total of samples 7; on each state (duration) is given by:

1 1
7 = = i =0,1,2,3. 12
MTICR, T A1) 0,1,2,3 (12)

2.2.3. Partitioned Markov Chain Model

The Partitioned Markov Chain Model is described as depicted in Figure 5 [21, 6]. This represents a
special form of a Markov chain, as proposed in [25], to represent asynchronous impulse events.

The binary case, as depicted in Fig. 3, exhibits exponential distributed duration. However, current
measurements revealed that duration as well as time of arrival are corresponded to the superposition of
exponential functions.

A

. B
(impulse free)

Transition (impulse)
u,. State 1 ustaw

gww

Transition
gl,1 State 2

Figure 5: Partitioned Markov chain model [21, 6].

The model in Fig. 5 is represented by n states plus two transition states. The duration within the
transition state is null. The n states are partitioned in two groups; Group A comprised by v states
represents the impulse free states, whereas Group B represents the impulse state. Figure 5 can be
interpreted as two Markov chains (Group A and Group B) joined by the two transition states. Depending
on the Group, the transition states represent a source or a sink node. The transition state 1 summarizes
the jump from Group A to Group B. The transition states 2 summarizes the jump from Group B to
Group A. These transition states allows to represent the partitioned Markov chain by two independent
transition probability matrices.

By means of this model, the probability to have m time span without impulsive noise is given by:
pa(m)=1 form=0
v
pa(m) = ZUU+1 cufy fork=0,2,..., M,
j=1

and the probability to have k time span of impulsive noise is given by:
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pp(k)=1 for k=0
(14)

pa(k) = Zng ~g§fj for k=0,2,...,L.
j=1

The values of p4(m) and pg(m) are derived instead of the state’s transition probabilities, since u;; and
gi; are not directly observable. In this case, the use of exponential curve-fittings represents an affordable
solution to the problem. In this regard it is defined a cost function by the sum of the squared errors
between the measured statistic and its modelled fit as:

M

Ca = (ya(m) = pa(m))* (15)

m=1

where y4(m) represents the measured data, and p4(m) is modelled by the parameters u;;’s given in (16).
The general approach is to find the values of u;; that result in a minimum of the cost function C4 and
the similar Cg. This is performed using the solutions:

= Simplex Method [21],
= Genetic Algorithms [6].

The report in [6] exhibits a better performance for Genetic Algorithms than the Simplex Method.

2.2.4. Second Level Markov Chain

This model is described by means of the diagram depicted in Figure 6, in which each state is sequentially
interconnected. That is, the state II; is interconnected with II;_; and II;1; but not with II;;2 or II;_s.
Jumps are only possible between the states ¢ and ¢ 4 1, similar to the random walking process.

Figure 6: Second level Markov chain [22].

In this case, the first state IIy denotes a non-impulse state, whereas the states II; to II,, represent the
occurrence of impulses of different variances.

By means of this model, impulsive noise bursts are described by consecutive transitions between the states
II; and II;, [ = 1,...n. Additionally, for this model three different metrics are analytically determined:
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1. Probability to have an impulsive noise burst of [ states.

2. Probability that the impulsive state II; lasts for k samples in a burst state.
3. Average impulse duration or width.

4. Inter-arrival time.

The probability to have an impulsive noise burst of [ states, happens when the process enter into the
state II; and it is coming from II;. This event is given by:

A Alfl
(-1

PH171 =€ (16)

2
where A = l% denotes the impulse index or the disturbance ratio, o is the variance of AWGN noise

1
in the channel, and o; denotes the impulsive noise variance on state [. This is in accordance with the
Middleton model in (7).

On the other hand, the probability that the impulse state II; lasts for k samples is given by:
Pkfsampleimpulse = Plll_l, . P[k[l_L . (]- - PII;,_I)v (17)
and using (16) this can be expressed as:

3 Al—l
Pkfsampleimpulse =e A (l — 1)' . P[k[l_l ' (1 - PIIL,Z)- (18)

The average impulse duration or width is given by:

n o}

twidsh = Tsr1 - Z Z k- P(k — sample impulse) (19)
1=1 k=1

where Ts ;7 determines the sample interval.

Finally, the inter-arrival time is established by the transition Ily_g, and the probability of k transitions
in this state is given by:

P(k — sampleinterval) = PI]“I;}O (1= P). (20)

Using this relation, the average impulse interval can be established as:

Tinterval = 19,11 Z k- P(k — sample interval) (21)
k=1
k—
=Tsr- (1= Prry_o) - > k- P!
k=1
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3. FUTURE WORK

From the reports analyzed in this paper, a variety of open problems may be considered:

1. The report in [12] describes the effect of impulsive noise taking into account the distances of the
noisy sources in (5). How to model this approach when the mentioned distances are unknown?

2. In order to estimate noise the report in [19] assumes that the signal of interest is Gaussian
distributed. Is it the case when the signal of interest is an OFDM waveform? How to model this?

3. Markov chain are used to describe exponential distribution of width and arrival time. However
the exponent are always integers. What if we want to describe arbitrary exponents?

4. CONCLUSIONS

This report summarizes the main statistical description of impulsive noise in general. However, a better
description can be obtained when , in particular, channel parameter are also included. In general, the
models reported lacks of this concern. Further analyses can be conducted in this direction. Taking into
account models for noise description Markov chain represents the preferred tool since this is an attempt
to describe real scenarios where bursty pulses takes places. Prior information as width, time of arrival
and correlation (second-order statistic) between noisy pulses can be incorporated into this formulation.
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